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T
he time could not be more ripe to
reinvigorate the long-standing dis-
cussion1�3 as to how the properties

of elastic two-dimensional (2D) conformal
elastic crystals4 are affected by geometry.5,6

The 2D crystalline membranes adapt to
the shape of (i.e., they conform to) harder
surfaces,7�9 develop ripples when free-
standing,10�21 and can be deformed into
arbitrary elastic regimes beyond harmonic
elasticity theory.22�27 The field is taking
off spectacularly with new materials com-
ing into play and a host of ideas from
graphene physics;such as strain eng-
ineering16,17,24�26,28�45

;being applied to
other 2D materials with more diverse elec-
tronic, valley and spin properties.46�51 At
the present moment, the portfolio of 2D
crystals includes graphene,52�58 hexagonal
boron nitride, transition metal dichalcogen-
ides, some oxides,4,46,59�64 silicene and
germanene,65 and new semiconductor

compounds.48,49 Their material properties
will depend on shape.
Bulk three-dimensional materials cannot

exceed a few percent elastic strain. In con-
trast, freestanding 2D crystals can sustain
much larger metric increases and strain into
the tens of percent (with or without accom-
panying curvature); they canbe driven away
from the harmonic elastic regime with
ease.22,23,66�70 Elastic two-dimensional mem-
branes71,72 can assume the shape of arbitrary
two-dimensional manifolds.1,73�77 Flexible 2D
membranes relieve mechanical in-plane strain
originating from defects by buckling out-of-
plane, hence trading stretching by bending.73

The geometry of atomistic membranes can
also be determined by the presence of ato-
mistic (topological) defects or lack thereof.73,78

Atomistic defects also induce radical behavior
by localizing electronic orbitals, altering opti-
cally available electronic transitions, and can
also induce a large curvature and strain.1,2
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ABSTRACT When flat or on a firm mechanical substrate, the atomic composi-

tion and atomistic structure of two-dimensional crystals dictate their chemical,

electronic, optical, and mechanical properties. These properties change when the

two-dimensional and ideal crystal structure evolves into arbitrary shapes,

providing a direct and dramatic link among geometry and material properties

due to the larger structural flexibility when compared to bulk three-dimensional

materials. We describe methods to understand the local geometrical information

of two-dimensional conformal crystals quantitatively and directly from atomic

positions, even in the presence of atomistic defects. We then discuss direct

relations among the discrete geometry and chemically relevant quantities;
mean bond lengths, hybridization angles, and σ�π hybridization. These

concepts are illustrated for carbon-based materials and ionic crystals. The pyramidalization angle turns out to be linearly proportional to the mean

curvature for relevant crystalline configurations. Discrete geometry provides direct quantitative information on the potential chemistry of conformal

two-dimensional crystals.
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When thinking of crystalline membranes, geometry
tends to be linked to curvature alone,1 but when
distances among atoms change;even under in-plane
strain;the metric changes as well. Since curvature
and metric both determine the local geometry, con-
formations with and without in-plane strain are geo-
metrically distinct already. Furthermore, mechanical
strain and metric are directly related and may even
be used interchangeably. While mechanical strain may
be modeled by a host of mechanical theories, each
with their own assumptions (i.e., continuummechanics
through the Cauchy�Born rule79 versus atomistic me-
chanics with interatomic potentials,80 all the way to full
ab initio based molecular dynamics81), one can bypass
mechanistic details and couple the relevant optical,
electronic, and chemical theories to changes in intera-
tomic distances directly. This concept was pioneered
for quantum dots under strain since the late 1980s,82

and it acquires a renewed relevance for 2D crystals
because the structural analysis directly originates from
finite atomic displacements, instead of beingmediated
by a continuum. By progression of thought, these
concepts arguably give atomistic (noncontinuum) ap-
proaches to geometry a special relevance, too. Those
atomistic approaches to geometry are based on
meshes,6,83 but the identification of an abstract mesh
with the atomic lattice of 2D crystals is a direct one,45 and
a number of teams are already complementing conti-
nuummechanical84,85 and electronic structure16,17,40,45,86

descriptions of crystalline membranes with some decid-
edly discrete approaches.
We argue that themathematical tool for geometrical

analysis is not just an object to process, filter, and/or fit
physical and chemical information. Instead, the geo-
metrical language can in fact lead and motivate the
scientific discussion. This observation is particularly
acute regarding chemistry.Within continuumgeometry/
elasticity theory, a 2D membrane is a chemically inert
atom-less medium, and no discussion of chemical
reactivity (or aromaticity for carbon-based materials)
has ever originated fromwithin continuum elasticity as
far as we know.
On the other hand, consider as an example benzene-

like carbon materials (such as graphene), where
aromaticity is a structural property.87 Infinite ideal 2D
graphene has three equivalent aromatic Clar structures
that lead to a constant mean bond length (MBL)
(Figure 1a):87�98 This is identical to say that the metric
(Figure 1c) is constant in such a system, thus suggest-
ing an intimate connection among aromatic behavior
and geometry. Now that the link among the aromati-
city of carbon rings and the metric has been exposed,
the next interesting and related question from a chemical
perspective is: What is the reactivity/aromaticity of strain-
engineered graphene?29�31,33 As far as we know, this
question is yet to be addressed; the issue of chemical
reactivity under nonplanar structural conformations will

certainly become more relevant as the science of con-
formal 2D crystals continues to be explored in years to
come.
Now, relevant for orbital hybridization,43 spin�orbit

coupling,99,100 and chemical reactivity, the pyramidali-

zation angle101 Rpyr relates to the angular deviation
among the local normal and bond vectors (Figure 1b).
The fact that curvature (obtained from points in
Figure 1c) and Rpyr could be related may be expected
intuitively, but their explicit dependence has not been
discussed so far. Their explicit relationwill be one of the
main results of this paper.
Hence, we argue by example that geometry origi-

nating from atoms is a powerful concept leading to
new scientific perspectives, new intuition, and to pre-
cise yet intuitive links to potential chemical and phy-
sical phenomena. In addition, although the systems
discussed here explicitly are carbon-based, the general
ideas are expected to apply for many 2D crystals
because the discussion here is of a general character
as it pertains to geometry. Most of the phenomena at the
single-electron level have to be explainable by (i) chemi-
cal composition, (ii) electron orbital symmetries,102�105

(iii) thermodynamics,106,107 andother dynamical informa-
tion at the relevant electron energies. Geometry is a
control handle for these properties.
The geometrical analysis applies unchanged to gra-

phene, nanotubes,2,102,108�123 single-layer hexagonal
boron nitride,46 and novel crystals with nonbuckled
hexagonal structure as those discussed by Hennig
recently.48,49 The formalism is then extended bymeans
of approximations to study arbitrary two-dimensional
nanomaterials with more general shapes, such as full-
erenes,124�129 Schwarzites,130 ionic crystals,78,131�133

Figure 1. Atoms required to determine local chemical mea-
sures and the geometrical parameters in eqs 1�3 and 5�7
for 2D crystals with hexagonal structure and no bucking. (a)
Atoms required to determine mean bond lengths on a
hexagon. (b) Four atoms needed to determine pyramidali-
zation angles. (c) Local lattice displacements a1

0
and a2

0
,

internal angles θi to edges ei and eiþ1, and darker shaded
hexagon of area Ap are shown; side view shows the normal
vector n̂.
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and other hexagonal systems with atomistic defects.
Thicker conformal systems (such as single-layer transi-
tion metal dichalcogenides or 2D systems with other
than hexagonal lattices) could be later explored along
similar lines.

Chemical Measures and Structure. Three measures ori-
ginate from carbon-based materials.

(1) Mean bond length (MBL): Aromaticity is not a
directly measurable property, and hence it cannot be
defined unambiguously. Yet, the structure accommo-
dating the maximum number of Clar sextets best
represents chemical and physical properties, and Clar
sextet migration increases chemical reactivity. How
aromatic is conformal graphene?18 Can rippling be
explained in terms of the creation of “aromatic do-
mains”? The MBL is defined as follows (Figure 1a):87,94

MBL ¼ aCC ¼ 1
6 ∑

6

i¼ 1
aCC, i (1)

where aCC,i are bond lengths ona closed loop as depicted
in Figure 1a. According to ref 94, MBL is a reliable tool for
analysis of large aromatic systems. To reach this conclu-
sion, they compared their results with the pseudo-π
method134 in the context of the six-center bond index
(SCI) analysis on graphene nanoribbons.

(2) The angle θσπ between the bonds and the
normal vector n̂ at atom p has a single value θσπ under
a spherical geometry101 and θσπ = π/2 on a flat surface.
The θσπ can be generalized for arbitrary geometries as
an average:

θhσπ � 1
3 ∑

3

i¼ 1
θ(i)σπ (2)

with θ(i)σπ being the angle among a bond vector and
the local normal (Figure 1b). Equation 2 takes its usual
form for fullerenes, where θ(i)σπ = θσπ for all bonds.

101

The pyramidalization angle Rpyr is defined by
Haddon101 as follows:

Rpyr ¼ θhσπ � π=2 (3)

(3) The σ�π orbital hybridization: In the presence of
curvature, the hopping parameter t between nearest
neighbors (1 and 2) for materials with s and p electrons
is modified to include hybridization among σ and π
electrons, as follows:43

t f (n̂1 3 r̂)(n̂2 3 r̂)(tσ þ δtσ)þ [n̂1 � (n̂1 3 r̂)r̂]

3 [n̂2 � (n̂2 3 r̂)r̂](tþ δt) (4)

where n̂1 and n̂2 are local normals for atoms 1 and 2, r is
the vector joining them, and r̂ = r/r. For example, for a
planar 2D crystal n̂1 and n̂2 are orthogonal to r̂, and tf

tþ δt (i.e., there is no σ�π hybridization), as expected.
The effect of σ�π electron coupling tends to be small,
and it is sometimes neglected but it is important to
visualize the magnitude of the coupling coefficient
(n̂1 3 r̂)(n̂2 3 r̂) in relevant atomistic conformations.

We next discuss geometry of atomic crystals in a
comprehensive way.

Local Geometry of Two-Dimensional Elastic Membranes from
Atomic Positions. The local geometry of two-dimensional
surfaces is determined from their metric (g) and cur-
vature (k) in terms of four invariants that indicate how
the two-dimensional manifold stretches and curves
along two directions with respect to a reference non-
deformed configuration. Given two in-plane vector
fields g1 and g2, a well-defined metric gRβ � gR 3gβ
must be symmetric (gRβ = gβR) and positive definite
(gRR > 0)135 (R,β = 1,2). Then, the four invariant
geometrical measures are (i) det(g) = |g1|

2|g2|
2 �

|g1 3g2|
2, Tr(g) = ∑R=1

2 |gR|
2, the Gauss curvature K �

det(k)/det(g), andH� ∑R=1
2 kRR/2gRR, themean curvature.

(In a continuum approach, the curvature is derived from
themetric tensor as follows: kRβ = n̂ 3 (∂gR/∂ξ

β) with ξβ an
in-plane coordinate. See, e.g., ref 136.)

Two-dimensional conformal crystals can be studied
with nontraditional tools that include discrete geome-
try, discrete differential geometry (DDG), and discrete
exterior calculus. Classical, Riemannian differential geo-
metry studies the properties of smooth, continuum
objects, and discrete geometry studies geometrical
shapesmade of polyhedra. DDG, in turn, seeks discrete
equivalents of notions and methods of continuous
and discrete geometry and applies to conformal 2D
crystals transparently. In fact, many concepts of
smooth geometry are limiting procedures of discre-
tizations. The main points for DDG are that intera-
tomic distances determine the discretization limit,
and that the continuum limit is not granted on
atomistic meshes. As seen in the next section, both
curvatures can be expressed within the framework
of DDG.

RESULTS

Basic Framework. Discrete geometry is expressed
from atomic positions, and the discrete metric is
defined from lattice displacements aR

0 16,17,45 on the
deformed lattice (Figure 1c):

gRβ ¼ aR0 3 aβ
0 (5)

The Gauss curvature (K) originates from the angle

defect ∑i=1
6 θi (Figure 1c) as follows:6,83,137

K ¼ (2π � ∑
6

i¼ 1
θi)=Ap (6)

where θi (i = 1,...,6) are inner angles among vertices and
the Voronoi tessellation (darker blue in Figure 1c) en-
closes the area Ap of a unit cell. Consistent with the
existence of two atoms on the unit cell of 2D crystals
with hexagonal symmetry,46,48,56 the points p and 1�6
in Figure 1c belong to the same sublattice. On a flat
surface, for example, the angle defect adds up to 2π,
making K = 0, as expected.
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Still relying on Figure 1c for geometrical guidance,
the mean curvature H averages the relative orienta-
tions of edges and normal vectors along a closed path,
and it is a signed quantity (i.e., it is sensitive to the side
of the 2D surface through its projection onto the local
normal n̂):

H ¼
∑
6

i¼ 1
ei � (νi, iþ 1 � νi � 1, i)

4Ap
3 n̂ (7)

Here, vi is the position of atom i on sublattice A, ei= vi�
vp is the edge between points p and i (note that a1(2)

0
=

e1(2)); νi,iþ1 is the normal to edges ei and eiþ1 (i is a cyclic
index), and n̂ = ((∑i=1

6 νi,iþ1Ai)/(∑i=1
6 Ai)) is the area-

weighted normal with Ai = |ei � eiþ1|/2.
6,45 (See ref 45

for extensive discussion.) The mean curvature can en-
hance the spin�orbit coupling in carbon-based nano-
materials.99,100

Additional Remarks on Exponential Maps. On the discrete
geometry, one never leaves the atomistic membrane
because all quantities are expressed in terms of
actual atomic positions. On continuum approaches to
mechanics/geometry, on the other hand, it is quite
possible that tangents lie outside of the 2D manifold,
and this must be remediated. The well-known Cauchy�
Born rule applies to space-filling materials but not to
crystalline membranes, unless corrected with an ex-
ponential map (Figure 2).45,136,138�140 The acute need
for exponential maps becomes yet another difference
among 2Dconformal crystals and bulk 3Dmaterials. The
need for exponential maps is not a technical matter but
a fundamental geometrical requirement for geodesic
curves in 2D manifolds. Exponential maps are deeply
rooted and long-known for the geometrical description
of surfaces5,135,141 and must be enforced onto descrip-
tions of nanoscale phenomena in conformal crystalline
membranes.

DISCUSSION

Relations among Chemical Measures and the Discrete Local
Geometry. Even though the relation amongmean bond
lengths andmetric is direct, the degree of sensitivity of
MBL with respect to fluctuations on interatomic dis-
tances makes a direct correlation difficult.16�18 In
Figure 3a�c, we contrast MBL with Tr(g) and det(g)
(we will not display the determinant of the metric
tensor in other figures; see ref 45 for extensive
discussion). Details of the creation of the rippled struc-
ture can be found in prior work16,17,45 (see Methods
section, too). Recalling the notion that pristine gra-
phene has equal bond lengths, Figure 3a indicates
that atomistic fluctuations will have a bearing on the
aromatic behavior of rippled samples; this concept, or
its ramifications, has not been discussed before.
Further analysis requires specific theoretical tools be-
yond our reach (see ref 134). [Herewemention that the

structure was obtained at 1 K (see Methods). At this
temperature, the lattice constant is on the order of
1.39 Å, but we use the more common value of 1.41 Å
whennormalizing; themetric in Figure 3b,c reflects this
normalization.]

There exists a remarkably simple one-to-one corre-
lation among the pyramidalization angle and the
mean curvature (sign included) for all of the systems
studied, as already evident from Figure 3d,e. Put
simply, we find

Rpyr (in rads)=1� H (inÅ�1) (8)

Equation 8 is an interesting result because it gives a
commonly used angular measure for orbital hybridiza-
tion and chemical reactivity a simple geometrical
character. This result will hold for other hexagonal 2D
crystals and deserves additional discussion.

The Rpyr is a signed quantity, as follows: Direct
inspection of Figure 1b and eq 3 indicates that Rpyr

will be positive for a bulge and negative for a sag.
Similarly, the mean curvature H in eq 7 is a vector
quantity projected onto the local normal; the relative
orientation of the normal (facing “up” or “down”)
confers H with a sign, as well. (Geometrically speaking,
one sees that radius of curvature changes sign for a
bulge or a sag, so H must in fact be signed.) However,
the correspondence goes beyond the sign. The cross
products on H (eq 7) confer an additional sinusoidal
function, which approximates as the angle rather well
up to 20� (0.35 rad), which is within the range of all
pyramidalization angles seen in this work. The correlation
on display in eq 8 is remarkable as it informs our intuition
concerning hybridization, thus making the mean curva-
ture adirect tool for analysis of hybridizationandchemical
reactivity for 2D systems with s and p electrons.

Now, the coefficient (n̂1 3 r̂)(n̂2 3 r̂) in eq 4 approx-
imates the amount of σ mixing onto π electrons in
graphene and renormalizes the Fermi velocity in that
system. Here we see that its magnitude is negligible
(10�4) for this sample of rippled graphene (Figure 3f).
(It may be worth mentioning here the existence of a

Figure 2. In three-dimensional materials, a deformation
field always belong to the bulk. In 2D conformal crystals,
on the other hand, a continuum deformation field may lie
outside of the material body. Structural stability requires
redefining the standard Cauchy�Born rule,79 so that defor-
mations aremapped back into the two-dimensional materi-
al. Being defined onto the atomistic membrane, discrete
geometry does not require such a mapping.
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roughly quadratic relation among H and this coeffi-
cient, which is not pursued further.)

Let us next consider these geometrical and chemical
measures when the 2D membrane in Figure 3 is under
mechanical load.Weworkedwith a large sample contain-
ing a few million atoms, and extensive technical details
have been given before.16,17,45 Let us concentrate on
geometrical aspects relevant to chemistry next.

Figure 4a provides basic schematics of themechan-
ical indentation procedure: The 2D crystal is held fixed
outside the central circular region, and a spherical
extruder pushes the 2D membrane down. Data are
analyzed at indentation heights of 50, 100, and 215 Å
(Figure 4b). To highlight atomistic detail, the same area
was employed as in Figure 3. The discrete metric is
formed by the lattice vectors on the deformed manifold,
which are not orthogonal. This shows in Figure 4d, which
lacks spherical symmetry.45 Nevertheless, the indentation

irons out the ripples seen in Figure 3 before indentation,
and this helps develop a one-to-one relation amongMBL
and Tr(g) (Figure 4c,d). Note interatomic distances as big
as 1.8 Å, well beyond the harmonic elastic regime.16

Interestingly, the relation among Rpyr and H still
remains, and H (Figure 4f) reproduces all and every
single detail from Rpyr (Figure 4e), even though they
are obtained following very different premises (eq 1
versus eq 7). Even under extreme mechanical load, the
coefficient (n̂1 3 r̂)(n̂2 3 r̂) in eq 4 (Figure 4g) is still smaller
than a few percent, an encouraging result as it grants a
sound footing to the effective theories of massless
fermions in graphene in terms ofπ electrons only, even
under such rather strong mechanical deformation.45

Atomistic Defects and Mixed (Atomistic/Continuum) Ap-
proaches to the Geometry of 2D Conformal Crystals. The
pentagon (heptagon) defect in Figure 5b will furnish
a positive (negative) Gauss curvature K. The presence

Figure 3. Chemical measures and the local geometry of a rippled 2D crystal with hexagonal symmetry. While no direct
correlation can be drawn among MBL in (a) and metric measures in (b,c), the pyramidalization Rpyr in (d) is directly
proportional to the mean curvature H in (e); this holds for all systems studied; (f) σ�π mixing43 is small (∼10�4).

Figure 4. Chemicalmeasures and the local geometry of a rippled2D crystalwith hexagonal symmetry undermechanical load.
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of defects therefore leads to an infinite variety of
structures. Topological defects break the crystal sym-
metry, and the crystalline metric (eq 5) will not be well-
defined around atomistic defects. Hence, we develop
next a metric in terms of continuous, differentiable
vector fields that interpolate atomic positions.

Incidentally, this discussion is quite relevant at this
moment, and it finds a unique place within the context
of continuum formalism for “strain-engineering” of 2D
crystals16,17,24�26,28�45,50,86 as it presents with clarity
“black-box” details of continuum approximations from
atomisticmeshes which have not been discussed up to
this point. The specific approach presented here relies
on the atomic lattice; it works with and without defects
and constitutes another ingredient of novelty on the
present article. (Care must be exercised in that atomistic
defects play the fundamental and non-negligible role of
(pseudo)magnetic monopole sources on the effective
electron theories for carbon-based materials.142)

In the approach presented here, all nodal points
originate from atoms. This approach, appropriately
called conforming polygonal, is employed nowadays
for structural analysis.143 Consider a point p with coordi-
nates (ξ1,ξ2) inside the regular polygon on the plane in
Figure 6a and thepolygonwith the samenumber of sides
formed by np atoms and coordinates ri = (xi, yi, zi) (i = 1,...,
np) on the conformal 2D crystal (Figure 6b). A point with

continuum coordinates r = (x, y, z) inside the conformal
2D crystal (Figure 6b) is found by interpolation:

r ¼ ∑
np

i¼ 1
riφi(ξ

1, ξ2) (9)

and the continuummetric is expressed from vector fields
in terms of the (convective) coordinates (ξ1,ξ2):

gR ¼ Dr
DξR

,andgRβ ¼ gR 3gβ (R,β ¼ 1, 2) (10)

This process is carried out at each polygon in the sample,
and themetric displayed in Figures 7 and8was evaluated
at each polygon's center. The (Laplace) interpolating
(shape) functions in eq 9 are defined by

φi(ξ
1, ξ2) ¼ wi(ξ

1, ξ2)

∑
np

j¼ 1
wj(ξ

1, ξ2)

(11)

withwi a functionof areasAgiven in termsof threepoints
defining thepolygonon the convective space (Figure 6a):

wi(ξ
1, ξ2) ¼ A(xi�1, xi , xiþ 1)

A(xi�1, xi , (ξ1, ξ2))� A(xi , xiþ 1, (ξ
1, ξ2))

(12)

We keep this discussion short; extensive information is
given in ref 143.

Figure 5. Neighborhood of an atom changes upon appearance of topological defects. (a) Neighborhood with no topological
defects (see Figure 1c). Themore commondefects are (b) a pentagondefect, (c) a heptagondefect, or a combination of (b) and
(c). Although the curvatures can still be obtained for a (b) and (c) by considering the atoms shown in red, the discrete metric
breaks down, and a continuum metric is given by interpolation methods.

Figure 6. (a) Orthogonal two-dimensional convective coordinate set (ξ1,ξ2) and a polygon. (b) Deformed polygon on an
actual 2D crystal. Partial derivatives, necessary in defining the continuum metric, are taken on the convective space.
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We have just indicated that we will be approximat-
ing the metric to discuss surfaces with topological
defects, but curvature must be dealt with additional
care. Deep-ingrained perceptions from continuum
geometry, such as a curvature evolving smoothly from
point to point, break down in crystalline surfaces,
where discrete objects (atoms and bonds) concentrate
and carry all curvature.6 For this fundamental reason,
we express curvature in systems with atomistic defects
from the six points highlighted in Figure 5, still employ-
ing eqs 5 and 6 to extract geometrical information, thus
carrying on with the discrete approach to curvature
even in the presence of atomistic defects. We display in
Figures 7 and 8 the chemical relevant measures and
the local geometry for a host of interesting structures
with topological defects. All relations found for 2D

crystals with no defects, and discussed in Figures 3
and 4, continue to hold.

Additional Remarks on Kinetics and Thermodynamics. In
considering the kinetics and thermodynamics of two-
dimensional crystals, energy barriers to atomic rear-
rangementsmay also depend on shape.106,107,144 Thus,
the geometry discussed here �in terms of atoms
alone� may prove very useful in establishing quanti-
tative connections among shape, kinetics and thermo-
dynamics. These connections may prove essential, for
example, to study potential growth mechanisms of 2D
crystals on conformal geometry.

CONCLUSION

We proposed in the recent past a discrete theory for
Dirac fermions on graphene and soon found the need

Figure 7. Chemical and geometrical measures for three ionic crystals.78

Figure 8. Chemical and geometrical measures for three space-filling 2D crystalline materials.
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to explore the geometrical framework in which these
theories rest. As the family of 2D atomic crystals
(graphene, hexagonal boron nitride, silicene, germa-
nene, novel binary semiconductors) and (layered)
transition metal dichalcogenides and topological in-
sulators continues to grow, establishing atom-based
geometrical tools for analysis of the properties of these
2D systems (both graphene and beyond graphene) is a
justified and current endeavor.
By their dimensionality, 2D crystals can sustain large

deformations, well beyond the reach of continuum
elasticity theory. In addition, continuum elasticity only
works in the bulk, as in 2D crystals a continuum
deformation field may lie outside of the material body.
We exemplify the discrete geometry and uncover a

linear relation among a chemically relevant measure
(piramidalization angle) and a fundamental geometri-
cal measure (mean curvature). In spite of the longevity
of the field of atom-thin materials, such insightful

identification has never been discussed before, and it
may become useful for chemical insights as the field
continues to evolve with ever greater vigor.
The concepts were illustrated on a number of car-

bon-based systems under rippling, mechanical load,
on ionic crystals with spherical symmetry and on some
other crystalline structures including Schwarzites.
Those concepts will translate effortlessly into other
2D crystals.
We also discussed ways to merge continuum and

discrete approaches for analysis of 2D conformal crystals.
By explaining the nuts and bolts of such approaches, we
decisively contribute to the discussion of continuum
frameworks and atomistic approaches to uncover the
properties of 2D crystals. Geometry from atoms is a
concept relevant to chemistry, and it will have an impact
on better informing our intuition regarding the chemical
properties of 2D crystals with shape, an area of research
experiencing a renewed thrust.

METHODS
The structures generated to study rippling;created by line

stress at the edges;and mechanical load were obtained from
molecular dynamics80 of a 3 million atom (finite) graphene
square patch with no periodic boundary conditions in thermal
equilibrium at 1 K. The geometrical study focused on a small
patch near the geometrical center.
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